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Motion Graph Convolutional Network 
for Skeleton-Based Action Recognition
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2S-AGCN[1], Shi et al. CVPR 2019. Our proposed algorithm

Proposed algorithm: 
We makes distant joint-temporal 
edges as shown in the left figure. 

- Temporal variations and correlations in human actions. 
1. Some actions consist of unique symmetric or repeated motion patterns. 
2. Some actions can be characterized by only certain temporal motion segments or 

combination of such motion segments rather than entire temporal motions

Based on our observations, action can be described better 
if temporal correlations of optimal joint pairs are learned.

Ex) ’drinking’ action.  
Right hand of first frame shows 
strong correlation with head of 
second frame 

Previous work:
2S-AGCN trains distant joint 
edges, but same edges are 
applied to all temporal frames. 



Overall Frameworks

1) Frame sampling

For F frame images and N body joints, 
we need (N × F) × (N × F) adjacent 
matrix! 
- Perform frame sampling to extract 

fixed number of key frames that 
play critical role in characterizing 
action types. 

Reduce computational cost!

2) Generating 4 types of edges

1) Multiply Learnable Parameters - Dk

Dk
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- Neighbor joint edge: Spatial relationship 
connecting each pair of neighbor joints. 

- Neighbor temporal edge: Temporal correlation of 
respective joint over time. 

- Distant joint edge: Additional connections 
connecting two joints located away to each other 
within single time frame. 

- Joint-temporal edge: Connection over time and 
space without any structural limitation. 

2) Multiply matrix through encoder-decoder - Ek
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Results

method CS(%)

(a)+(b) 81.5

(a)+(b)+(c) 88.5

(a)+(b)+(c)+(d) 90.4

Using NTU RGB+D Action Recognition Dataset

- 56,880 action samples.
- containing RGB videos, depth map sequences, 3D skeletal data, and infrared videos. 
- 60 classes with daily action, medical conditions, mutual conditions.

Experiment

Using Kinectics-skeleton Dataset

- about 300,000 RGB videos
- 400 classes with daily action.
- obtained the coordinates of skeleton using open source, OpenPose [2], in rgb video. 

- It has improved accuracy about 
2% compared to baseline, 2S-
AGCN with NTU dataset. 

- If the orders of human action are mixed, it 
means different action. 

- JT-edges make easy to extract temporal 
relationships than the previous one. 

Method CS(%)

Without
shuffling

(a)+(b)+(c) 88.5

(a)+(b)+(c)+(d) 90.4

With
shuffling

(a)+(b)+(c) 13.4

(a)+(b)+(c)+(d) 8.8

For demonstrating how JT-edges are effected to 
classify action, we shuffled each samples along 
the temporal axis and input to each pre-trained 
JT-MGCN models. 
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JT edges of Top 10 highest weight value of (Dk+Ek) on the body skeleton
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