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Abstract—Recently, action recognition methods using graph
convolutional networks (GCN) have shown remarkable perfor-
mance thanks to its concise but effective representation of human
body motion. Prior methods construct human body motion graph
building edges between neighbor or distant body joints. On the
other hand, human action contains lots of temporal variations
showing strong temporal correlations between joint motions.
Thus the characterization of an action requires a comprehensive
analysis of joint motion correlations on spatial and temporal
domains. In this paper, we propose Joint-temporal Motion Graph
Convolutional Networks (JT-MGCN) in which joint-temporal
edges learn the correlations between different joints at different
time. Experimental evaluation on large public data sets such
as NTU rgb+d data set and kinetics-skeleton data set show
outstanding action recognition performance.

I. INTRODUCTION

Human action recognition has been studied in many com-
puter vision topics such as human machine interaction, be-
havior and situation understanding, medical diagnosis, and
video surveillance. Traditionally, action recognition has been
performed on RGB-video data extracting and tracking human
body based on visual appearance clues [1]. Recently, many
skeleton-based action recognition methods have been proposed
using 3D sensors like Microsoft Kinect which is able to obtain
human body joints and their clean movement information
directly. Traditionally, action recognition on body skeleton
data has been performed with handcrafted motion features. For
example, lie group represents a set of skeleton changes as a
single point following lie algebra for action classification. On
the other hand, deep learning methods have been proposed
in action recognition showing outstanding performance on
skeleton data. Action recognition has been implemented based
on diverse deep neural networks [2]. Algorithms are largely
divided into RNN-based [3]–[16], CNN-based [14], [17]–[24]
and GCN based [10], [15], [16], [25]–[29], as shown in table
I. Long-Short term memory (LSTM) based deep learning net-
works have been successfully performed recognition tasks with
sequential data such as human behavior, speech, and sentences
of writings. There are many prior work using LSTM for action
recognition I. Zhu et.al. [30] propose to incorporate LSTM

Fig. 1. Joint-temporal motion graphs with and without joint-temporal edges:
Neighbor Joint Edge (NJ Edge), Neighbor Temporal Edge (NT Edge), Distant
Joint Edge (DJ Edge), Joint-temporal Edge (JT Edge) (a) Joint-temporal
motion graph of existing methods with NJ edges, NT edges, and DJ edges
(b) Joint-temporal motion graph of our method with NJ edges, NT edges, and
JT edges

for observing the co-occurrences of joints in human actions.
Zhang et.al. [7] propose a novel view adaptation scheme
to automatically regulate observation viewpoints during the
occurrence of an action using LSTM architecture to address
large view variation problem in human action. On the other
hand, LSTM shows limited performance in extracting the
correlation between two joints within a frame or separated
frames. In order to address the problem, there are several
approaches converting body movement information to 2D
image to apply CNN based deep network. Joint Trajectory
Map(JTM) [17] is proposed to express motions as images
and is used as enter map for CNN to classify action. Ke



TABLE I
3D SKELETON-BASED ACTION RECOGNITION ALGORITHMS USING EACH NETWORKS.

et.al. [18] propose to transform each skeleton sequence into
2D image clips for spatio-temporal feature learning. They
apply deep convolutional neural networks to extract motion
features. And Multi-Task Learning Network (MTLN) is used
to jointly process all frames of extracted features in parallel
to incorporate spatial structural information. Their improved
method [24] learns optimal convolutional network model for
training features with motion clips. However, these CNN-
based approaches have limitation in extracting dependencies
between body joints located away to each other.

Recently, graph convolutional networks (GCN) has been
successfully adopted for action recognition in many methods.
Human body skeleton is represented as a structure of graph.
Body joints and parts are represented by graph nodes and
edges connecting two neighbour joints, respectively. Thanks
to its concise but effective representation of human body
motion, action recognition methods using GCN have shown
improved recognition performance. Most of the methods [15],
[26]–[29] extract features using convolutional computation on
the body graph encoding body motion of neighbor joints. ST-
GCN [26] also extracts correlation of joint motion between
two connected body joints for action recognition. Actional
Structural GCN method [27] claims that in many body mo-
tions, two distant and not connected joints also frequently
show strong correlation. For example, in walking motion, the
correlation between right hand and left foot (and vice versa)
plays an important role in classifying the motion. To include
such distant joint correlation, they add Actional-links(A-links)
modules calculating associations between distant joint pairs
using encoder-decoder networks. Finally using the encoder
part, they build A-links and add new edges to body motion
graph to perform GCN operations. 2S-AGCN [15] defines two
additional adjacent matrices. First one is data dependent adja-
cent matrix using correlation between two joints. Second one is
data independent adjacent matrix allowing different topology
on each layer. DGNN [29] represents the relationship between
parent and child nodes by changing the basic graph structure
to the directed acyclic graph (DAG). In addition, trainable
adjacent matrices are added to find new edges that represent
relationships between distant joints, as well as adjacent joints.

We focused temporal variations and correlations in human

Fig. 2. Samples with some correlation between joints and time.

actions. First, some actions consist of unique symmetric or
repeated motion patterns. For example, walking and hand wav-
ing in figure 2 contain repeated temporal motion patterns that
are discriminative temporal features. ’Bow’ shows bilateral
symmetry motion pattern over temporal axis. Second, some
actions can be characterized by only certain temporal motion
segments or combination of such motion segments rather than
entire temporal motions. For example, salute action can be
easily recognized by few key frames as indicated in figure
2. Based on our observations, action can be described better
if temporal correlations of optimal joint pairs are learned.
However, state of the art methods ignore the relationship
between joints from certain different time. In figure 1(a), state
of the art prior method 2S-AGCN trains distant joint edges, but
same edges are applied to all temporal frames. On the other
hand, our proposed method makes distant joint-temporal edges
as shown in the figure 1(b). For example, in ’drinking’ action,
right hand of first frame shows strong correlation with head
of second frame.

In this paper, we introduce joint-temporal edges extracting
the correlation between distant joints at distant time. We
propose joint-temporal motion graph convolutional networks
(JT-MGCN) for skeleton-based action recognition. When con-



Fig. 3. The pipeline of the proposed JT-MGCN. It consist of a JT-MGC block and 9 MGC blocks. There are temporal pooling function per 3 MGC blocks.

Fig. 4. Frame Grouping and Sampling

structing a graph, not just the relationship between joints on
one body graph, but also the relationship between joints at
distant time are considered. Fixed number of key frames of
an action are extracted and joint-temporal motion graph is
constructed. Five adjacent matrices define four types of edges
on human body graphs. We perform experimental evaluation
on NTU RGB-D dataset [4] and Kinetics dataset [31] to
demonstrate the performance of proposed algorithm.

II. PROPOSED METHOD

Figure 3 summarizes our proposed method. Proposed JT-
MGCN first performs frame sampling to extract key frames
and reduce the computational cost. Four types of joint-
temporal edges are generated over key frames building joint-
temporal motion graph on human body action. Features ob-
tained through five adjacent matrices are added and, finally,
two stream JT-MGCN is trained and action classification is
performed.

A. Frame Sampling

If motion samples consist of F frame images and N body
joints are used for recognition, (N × F ) × (N × F ) adjacent
matrix has to be constructed to manage all edges of any pair
of joints from any time frame, which is F 2 times bigger
compared to prior N ×N adjacent matrix without our Joint-
temporal edges. This will incur huge computation cost in
training step. Because not all of image frames are equally
important in describing certain human body action, we perform
frame sampling to extract fixed number of key frames that
play critical role in characterizing action types. We define
that key frame contains a unique body pose that cannot be

interpolated by other frames. We divide entire image frames
into G consecutive groups and detect one key frame per group
(Figure 4). Three different sampling methods are presented and
tested in our experimental evaluation.

Sampling with uniform averaging: We make a new graph
by averaging the location values of each joint along the time
axis within each frame group. G averaged frames become
representative key frame of G groups. As a result, joint-
temporal motion graph is built on G key frames. However,
frame averaging sometimes makes non-existing or strange
body pose frame that is nothing to do with original action.

Sampling with peak of joint location: Alternative sam-
pling method is selecting a frame with the largest position
values of each joint within a group. By setting the key frame
in this way, stretched poses in each body action are selected
as key frames. However, such absolute locations of body joint
are not always critical pose for action recognition.

Sampling with direction change of velocity(zc): In this
case, we select a frame of maximum absolute slop in the
velocity (first derivative of location) plot out of all zero
crossing frames. The zero crossing points of the velocity plot
are candidates for key frames.

The length of an action varies according to the type of
action and even subject. For example, ’wearing a jacket’ action
is usually longer than ’sitting down’ action and the length
of ’wearing a jacket’ varies from subject to subject. In this
work, temporal length variation of instances are adjusted in
two ways. First, all action clips are repeated up to certain
fixed number of frames, T (Repeating). In this case, discon-
tinuous motion occurs at the boundary of two repeated actions,
whereas original speed of action is preserved. Second, we
resize the length of all samples as T (Resizing). In other words,
we increase or decrease the length of actions to T. In this case,
we have no repeated identical action in a sample without any
discontinuity, however it lose its original speed of action that
could be an important characterstics for some action. In our
evaluation, we compare results of both cases.

B. Joint-Temporal Edge

Proposed joint-temporal motion graph convolutional net-
works (JT-MGCN) employs four types of edges: Neighbor
Joint Edge (NJ Edge), Neighbor Temporal Edge (NT Edge),
Distant Joint Edge (DJ Edge), Joint-temporal Edge (JT Edge).

Figure 5 visualizes each edge type with corresponding edge
samples. Neighbor joint edge is the conventional graph of



Fig. 5. Four types of edges in our JT-MGCN

human body structure connecting each pair of neighbor joints
extracting features of body pose at each time frame. Neighbor
temporal edge detects temporal correlation of respective joint
over time. Distant joint edge gives additional connections over
NJ and NT edges connecting two joints located away to each
other within single time frame. For this edge, the relationship
between joints in all frames is represented at once. That is,
the relationship between joints that is judged important in an
action is connected. However, human action do not mean that
certain joints have the same importance for all frames. In
the case of ’taking off jacket’, the relationship between the
right hand and the torso is important at the beginning of the
action, but at the end of the action, location of the right hand
does not distinguish between the corresponding action class.
In this paper, the following edge is used to solve this problem.
Joint-temporal edge provides joint connection over time and
space without any structural limitation. Through this edge it
is possible to explicitly represent the relationship between
different frames and joints.

C. JT-MGCN

The overall structure of our JT-MGCN is shown in figure 3.
JT-MGCN consists of one JT-MGC block and nine cascaded
MGC blocks. JT-MGC block generates JT edges that are
used in all following graphs extracting features. JT-MGC
block processing occurs once in earliest block. After the first
block has passed, temporal frame order will be inter-mixed
in following the feature space. Therefore, we build JT edges
only in the first block. After the JT-MGC block followed by
three MGC blocks, a pooling along time axis occurs. The
model finds the global features of action through pooling layer.
Once all blocks have been passed, fully connected layers are
attached for action classification.

1) Motion Graph Convolution Block: The motion graph
convolutional block (MGCB) extracts features using the edges
connected to the graph through the following figure 6. MGCB
is similar to AGCB of [15] as shown in figure 6 (a). Sim-

Fig. 6. Graph Convolutional Blocks (a) Regular MGC block, (b) Joint-
temporal MGC block.

ple Convs is a regular motion graph convolution layer for
extracting features in joint domain and Convt is a regular
graph convolution layer for extracting features in time domain.
Between each layer, there is a batch normalization and a relu
operation. The overall structure of the joint-temporal motion
graph convolution block (JT-MGCB) is shown in the following
figure 6 (b). It has basically the same structure as regular
MGCB. Difference is ConvJT. comprehensive features in time
and space is extracted through ConvJT and additional feature
in time is obtained through temporal GCN, Convt. At this
time, there is a batch normalization and relu after the convJT
and convT, and a residual path is added to learn stably.

2) Motion Graph Convolution Layer with Joint-temporal
edges: In our JT-MGCN, we define five adjacent matrices
(Ak, Bk, Ck, Dk, Ek) that encode four types of edges repre-
senting human actions. Equation (1) is the formula used in
previous work 2S-AGCN [15] with Ak, Bk, Ck. They added
DJ eedges on basic GCN formula for extracting feature
between distant joints.

fout =

Kv∑
k

Wkfin(Ak +Bk + Ck) (1)

where, Kv denotes the kernel size of spatial dimension. Ak

is an adjacent matrix representing NJ edges, which describes
human body structure. Bk and Ck describe DJ edges. It gives a
new graph topology to the results after each convolution layer
by this adjacent matrix. DJ edges described by Ck represents
data dependent correlation between joints. For calculating Ck,
two joint responses are multiplied to measure the similarity
in an embedding space using convolution function. Joint-
temporal edges are defined by two new adjacent matrices: Dk

and Ek. Dk and Ek consist of (N×G) × (G×N ), indicating
which joint of frame is associated with which joint of other
frame. Dk describes JT edges based on data independent
correlation between the joints, which is made up of weights
that are learned for all samples to best classification. For
example, if the relationship between the first frame and the
last frame is crucial in action recognition, then corresponding
JT edge will get higher weight. Ek describes JT edges based



Fig. 7. Structure of convJT. Red boxes mean learnable parameters. Blue box
shows ConvS. ⊕ denotes elementwise summation and ⊗ matrix multiplica-
tion.

on data dependent correlation between the joints, For example,
in ’walking’ action, an edge is added to the left hand of the
first frame and the right foot of the last frame after training
the network. This means that the correlation between the
two joints or respective time is important clue in recognizing
’walking’ action. On the other hand, in ’pick up’ action,
the head of the first frame and foot of the second frame is
connected.

Now, we add new adjacent matrices Dk and Ek to equation
(1).

fmgc = fin · (Ak +Bk + Ck) (2)

fJT−mgc = I(S(fin) · (Dk + Ek)) (3)

where S indicates frame sampling using three different meth-
ods mentioned in II-A. fmgc and fJT−mgc have different
temporal resolution, because fJT−mgc are calculated after
sampling. Therefore, we use simple interpolation function, I,
to fill the blank frames.

fout =

Kv∑
k

(fmgc + fJT−mgc) ·Wk (4)

Finally, we obtain new fout from fmgc and fJT−mgc

with convolution weight Wk. Bk, Dk, Ek are all optimized
through back propagation during training the model. Matrices
Bk, Ck, Dk, Ek are able to be used as attention map indicating
strongly correlated joint pairs. If any value is assigned, there
would be an edge connecting two joints. And higher value
means higher importance of the two joints in recognizing an
action.

D. Two-stream JT-MGCN

In our implementation of the network, we organize the
JT-MGCN as two-streams. Each stream is learned from a

different order of dataset. First stream is trained using the
location of the joints as follows figure 3. Second stream uses
bone data connected between joints. Each joint is organized
hierarchically so that when the upper joint moves, it moves
along with the lower joint. For example, if the shoulder is
moved, the elbow also change position. So, learning about
bones helps in action recognition. In this paper, we obtain
the difference between two neighbor joints and use it as
a value for bone. when source joint is v1 = (x1, y1, z1)
and target joint is v2 = (x2, y2, z2), the vector of bone e1
is (x1 − x2, y1 − y2, z1 − z2). Using these two kinds of
data, we construct each stream and learn each one. Both
models ensemble to make final classification result using each
probability maps when learning is completed.

III. EXPERIMENTAL EVALUATION

We use two widely used datasets to evaluate our proposed
algorithms and made comparisons.

NTU+RGBD Dataset(NTU) This dataset is the largest
action recognition dataset obtained with kinect v2. There are
about 50,000 sequences from 40 people and 60 classes. Two
evaluations are performed (cross view and the cross subject)
proposed by [4]. Cross view uses one of the three camera
views distributed on the dataset as test, and 2 and 3 camera
as training. Cross subject uses data from 20 people as training
and the others as test.

Kinectics-skeleton Kinectics is an action dataset published
by Deep Mind, consisting of about 300,000 rgb video samples,
400 classes and at least 400 samples per class. In this paper,
the experiment was carried out using kinetics-skeleton dataset,
which obtained the coordinates of skeleton using open source,
OpenPose [32], in rgb video. The coordinates of the obtained
skeletons consist of X and Y coordinates in the rgb images
and the joint’s confidence score in the (X,Y,C). 240,000 set
clips are used for training and 20,000 samples are used for
test. For frame sampling, five frames are extracted from total
300 frames. We conduct experiments using two Nvidia Titan
RTX GPUs. The batch size is 80. At JT-MGCN, SGD is used
as an optimization function for learning. To avoid overfitting
weight decay is set to 0.001. Our model uses cross entropy as
loss function.

A. Ablation Study

1) Frame Sampling Results: As described in II-A, either
repeating or resizing can be performed for data pre-processing.
Frame sampling results are shown in figure 8. In the cases of
’peak’ or ’zero crossing (zc)’ with repeating, ’throw’ motion
shows multiple iterations. Especially for ’uniform’ case of
’pick up’ motion, the first frame is coincidentally identical,
so all the same frames are selected. This would reveal almost
nothing of the action. On the other hand, selected frames of
resizing represent a series of movements well. The results of
the frame sampling method also show different aspects. In
the case of ’uniform’, very similar frames are selected as key
frames because five frames are picked evenly regardless of
the amount of variation in action. Comparison of ’peak’ with



Fig. 8. Results of frame sampling. ’Uniform’,’Peak’ and ’ZC’ means ’uniformly averaging’,’peak of location’ and ’zero crossing’. In ’Throw’, repeating
makes mixed order. On the other hand, for resizing, one motion continues smoothly. Looking at ’Pick up’ in repeating, the same frames are selected repeatedly
for ’Uniform’ and ’ZC’

’zero crossing’ of resizing shows that the ’peak’ does not find
middle part of an action because ’peak’ simply finds a large
position value in an action.

2) Classification Results: First, we compare experimental
results using two pre-processing methods, repeating and resiz-
ing. Kernel size is the size of temporal median filter for body
motion smoothing. Repeating with kernel size of ’5’ shows
best performance (table II). Bigger kernel size may remove
important clue of motions. The classification results using two
types of JT edges, Dk and Ek are shown in table III. Compared
to the accuracy of existing algorithms that do not include JT
edges proposed in this paper, using Dk increased by about
2.5% and Ek by about 2%. This shows that there are specific
data-dependent joint-temporal relationship, as well as common

TABLE II
RESULTS OF CLASSIFICATION ACCURACY(%) ON EACH PREPROCESSING

USING CROSS-SUBJECT OF NTU RGBD DATASET.

Kernel size
Method 5 15

Repeating 90.40 90.19
Resizing 89.63 89.20

relationship to classify in all action. Both edges performed
best, indicating that the two edges did not conflict with each
other.

The table IV is a comparison of the three methods of
frame sampling. The ’peak of location’ method shows the best
performance because selected frames contain more various
time changes than other methods.

For demonstrating how JT-edges are effected to classify
action, we shuffled each samples along the temporal axis
and input to each pre-trained JT-MGCN models. As follows
table V, results without shuffling show that using Dk and Ek

improves classification performance, on the contrary results
with shuffling don’t. If the orders of human action are mixed,
it means different action. Thus, when actions are classified,

TABLE III
RESULTS ON EACH JOINT-TEMPORAL EDGES USING NTU RGBD DATASET.

Adjacent matrices Accuracy(%)
(Ak +Bk + Ck) 88.5
(Ak +Bk + Ck) +Dk 90.28
(Ak +Bk + Ck) + Ek 90.23
(Ak + Bk + Ck) + Dk + Ek 90.40



TABLE IV
RESULTS ON EACH FRAME SAMPLING METHODS USING NTU RGBD

DATASET.

Frame Sampling Method Accuracy(%)
Uniform averaging 89.48

Peak of joint location 90.40
Zero crossing 89.66

extracting temporal features is important. JT-edges make easy
to extract temporal relationships than the previous one. Com-

TABLE V
RESULTS WITH SHUFFLED FRAMES USING NTU RGBD DATASET.

Adjacent matrices Accuracy(%)
without Ak +Bk + Ck 88.5
shuffling Ak +Bk + Ck +Dk + Ek 90.4

with Ak +Bk + Ck 13.4
shuffling Ak +Bk + Ck +Dk + Ek 8.8

parison between our proposed networks and state of the art on
the NTU rgbd dataset is as follows table VI. It has improved
accuracy about 2% compared to baseline, 2S-AGCN with NTU
dataset. And also JT-MGCN is competitive with state of the
art. The JT edge, we propose, is available in all other GCN
algorithms. Thus, if the performance of the GCN algorithm is
improved, it will show better accuracy.

TABLE VI
ACTION RECOGNITION RESULT ON NTU DATASET. IT SHOWS EACH

ACCURACY ALONG THE MEASUREMENT, CROSS-SUBJECT AND
CROSS-VIEW.

Method Year CS(%) CV(%)
PA-LSTM [4] 2016 62.9 70.3
ST-LSTM+TS [5] 2016 69.2 77.7
STA-LSTM [8] 2017 73.4 81.2
VA-LSTM [7] 2017 79.4 87.6
MTLN [18] 2017 79.6 84.8
ST-NBMIM [9] 2018 80.0 84.2
MTCNN [24] 2018 81.1 87.4
ST-GCN [26] 2018 81.5 88.3
DPRL+GCNN [25] 2018 83.5 89.8
SR-TSL [10] 2018 84.8 92.4
AS-GCN [27] 2019 86.8 94.2
2S-AGCN [15] 2019 88.5 95.1
DGNN [29] 2019 89.9 96.1
JT-MGCN(proposed) 2020 90.40 95.78

TABLE VII
ACTION RECOGNITION RESULT ON KINETICS-SKELETON DATASET. IT

SHOWS TOP-1 AND TOP-5 ACCURACIES.

Method Year Top1(%) Top5(%)
ST-GCN [26] 2018 30.7 52.8
AS-GCN [27] 2019 34.8 56.5
2S-AGCN [15] 2019 36.1 58.7
DGNN [29] 2019 36.9 59.6
JT-MGCN(proposed) 2020 37.0 59.8

Also, JT-MGCN shows better accuracy than others on
Kinetics-skeleton Dataset as follows table VII. Compared to
baseline algorithms, our methods improves performance by
1%.

3) Visualization of the Joint-temporal Motion Graph: Fig-
ure 9 shows adjacent matrices trained in our JT-MGCN. Each
red block represents one time frame. For example, block (2,1)
represents the relationship between the joint of the second
frame and the first frame. Figure 9 (a) is the adjacent matrix of
NJ edges and DJ edges. Therefore, there is no edge between
different frames (Outside of diagonal blocks). On the other
hand, for Dk and Ek as proposed in this paper, there are joint
relationships between frames learned as JT edges.

Fig. 9. (a) shows Ak +Bk +Ck that represent NJ and DJ edges. (b) shows
Dk + Ek that represent JT edges. A block is an adjacent matrix within a
frame.

Figure 10 shows JT edges of Top 10 highest weight value of
(Dk+Ek) on the body skeleton. Figure 10 (a) ’drinking water’,
the movement of the upper body is mainly used. (b) ’kicking’
on the other hand is mainly used a lower body movement.
Nevertheless, the edges corresponding to the two samples
are the same. This shows that the overall characteristics of
the samples, Dk, generally become more pronounced than
the data dependent matrix, Ek. Especially when the legs
move in a person’s movements, the arms of the person move
together. Therefore, the relationship between upper body joints
is important in a person’s action classification. This result is
the same for the classification result above table III. And the
relationship between the first frame and the other frames has
more influence in classifying action, as shown in the figure 10.
This indicates that a starting point is important in a person’s
action.

IV. CONCLUSIONS

There exist a complex relationship between time and space
in a person’s action. To express this relationship, we proposed
a Joint-temporal edge. Using this edge, we made to train
the JT-MGCN model and presented improved results. There
were certain important edges in human movement and learning
them using the corresponding edges confirmed that their
performance was improving.
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Fig. 10. Visualization JT-egdes (red lines) with the highest weight value of
NTU rgbd dataset. Skeleton in each frame from left to right in order.
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